Abstract

Immunology has its developmental roots in understanding protection of the host from pathogens, leading to the development of vaccines and subsequently identification of soluble and cellular components of the immune system. Thus, immunology education has historically been tightly linked to infectious disease. Decades of research have demonstrated that the complexity and intricacies of the immune system are far greater than perhaps was once imagined. As a system that interfaces with all other organ systems in the body, it plays a key role in both maintaining health and causing life-threatening disease, thereby solidifying its importance in several clinical specialties beyond protective immunity. In the past decade, tremendous advances have taken place in which scientists and physicians have begun to harness the power of the immune system to create immunotherapies to fight cancer, inflammatory syndromes and autoimmune diseases. Thus, the argument can be made that training individuals in the field of immunology is becoming increasingly important. However, immunology is a highly conceptual discipline and understanding how the multiple cellular and soluble components of the immune system work in concert requires knowledge in a number of disciplines, including molecular biology, cell biology, genetics, and biochemistry. Time is needed for students to process, evaluate, and apply this information in meaningful ways. Concomitantly, knowledge in the field of immunology is expanding rapidly, bolstering the need for increased time in the curriculum to facilitate the ability of educators to convey information so that it can be effectively understood and applied. We propose that it is time for a renaissance in immunology education at the undergraduate level to better prepare individuals who will subsequently pursue careers in medicine, related health professions, and research. The purpose of this article is to discuss the current state of undergraduate immunology education with respect to its prevalence and how this compares to other biological disciplines, the need to develop robust immunology curricula at the undergraduate level and the importance of such programs in preparing students for pursuing postgraduate training in the health professions, and research-intensive careers.

Highlights

  • The evolution of discovery in the field of immunology has been immense, highlighting the mechanistic intricacies of the immune system and opening opportunities to develop targeted therapeutic interventions based on understanding the fundamental molecular and cellular processes that regulate the function of the immune system

  • Because there is a clear lack of emphasis on immunology education at the undergraduate level, this significantly diminishes the number of individuals who are exposed to this discipline in an in-depth manner earlier in their educational experience and this may in turn impact the number of individuals who go on to pursue immunology-related careers

  • Based on an analysis of the number of immunology programs/majors, the number of degrees conferred by such programs, the prevalence of articles in the literature that discuss curricular or pedagogical interventions in immunology, or the infrastructure available in the form of organized faculty groups, journals or other resources to support education in immunology, education in immunology does not appear to constitute a major focus at the undergraduate level

Read more

Summary

Introduction

The evolution of discovery in the field of immunology has been immense, highlighting the mechanistic intricacies of the immune system and opening opportunities to develop targeted therapeutic interventions based on understanding the fundamental molecular and cellular processes that regulate the function of the immune system. The comparison between immunology and neuroscience is relevant because both systems are complex, interact with every other organ system in the body and play critical physiological roles in maintaining health, while at the same time having the potential to cause significant morbidity and mortality when they function abnormally. The second year allows students to continue working on core science courses and in the second semester students take the first course in the immunology core series, Introduction to the Immune System (MIC 275) This is an overview course designed to introduce students to basic concepts pertaining to the innate and adaptive arms of the immune response. MIC 401-MIC 404 are required courses, whereas MIC 400, The Microbiome in Health and Disease, is optional

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call