Abstract

Context Egg depredation is a major cause of reproductive failure among birds and can drive population declines. In this study we investigate predatory behaviour of a corvid (little raven; Corvus mellori) that has only recently emerged, leading to widespread and intense depredation of eggs of a burrow-nesting seabird (little penguin; Eudyptula minor). Aims The main objective of this study was to measure the rate of penguin egg depredation by ravens to determine potential threat severity. We also examined whether penguin burrow characteristics were associated with the risk of egg depredation. Ravens generally employ two modes of predatory behaviour when attacking penguin nests; thus we examined whether burrow characteristics were associated with these modes of attack. Methods Remote-sensing cameras were deployed on penguin burrows to determine egg predation rates. Burrow measurements, including burrow entrance and tunnel characteristics, were measured at the time of camera deployment. Key results Overall, clutches in 61% of monitored burrows (n = 203) were depredated by ravens, the only predator detected by camera traps. Analysis of burrow characteristics revealed two distinct types of burrows, only one of which was associated with egg depredation by ravens. Clutches depredated by ravens had burrows with wider and higher entrances, thinner soil or vegetation layer above the egg chamber, shorter and curved tunnels and greater areas of bare ground and whitewash near entrances. In addition, 86% were covered by bower spinach (Tetragonia implexicoma), through which ravens could excavate. Ravens used two modes to access the eggs: they attacked through the entrance (25% of burrow attacks, n = 124); or dug a hole through the burrow roof (75% of attacks, n = 124). Burrows that were subject to attack through the entrance had significantly shorter tunnels than burrows accessed through the roof. Conclusions The high rates of clutch loss recorded here highlight the need for population viability analysis of penguins to assess the effect of egg predation on population growth rates. Implications The subterranean foraging niche of a corvid described here may have implications for burrow-nesting species worldwide because many corvid populations are increasing, and they exhibit great capacity to adopt new foraging strategies to exploit novel prey.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.