Abstract

While a host of economic variables have been identified in the literature with the apparent in-sample ability to predict the equity premium, Goyal and Welch (2008) find that these variables fail to deliver consistent out-of-sample forecasting gains relative to the historical average. Arguing that substantial model uncertainty and instability seriously impair the forecasting ability of individual predictive regression models, we recommend combining individual model forecasts to improve out-of-sample equity premium prediction. Combining delivers statistically and economically significant out-of-sample gains relative to the historical average on a consistent basis over time. We provide two empirical explanations for the benefits of the forecast combination approach: (i) combining forecasts incorporates information from numerous economic variables while substantially reducing forecast volatility; (ii) combination forecasts of the equity premium are linked to the real economy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.