Abstract
When a crack or sharp notch is subjected to antisymmetric plane loading the Poisson's effect leads to the generation of a coupled out-of-plane singular mode. The latter was known to exist for problems with cracks for a long period of time; meanwhile this mode was largely ignored in theoretical studies of V-shaped notches subjected to in-plane loading as well as in practical fracture problems associated with such geometries. Only recently a characteristic equation describing the strength of the singularity of this mode was derived within the first order plate theory. Preliminary numerical investigations confirmed that a highly localized out-of-plane singular state linked to the transverse shear stress components does exist in the close vicinity of the notch tip with the singular behaviour as theoretically predicted. However, until now it is unclear how significant this mode is and whether it has to be taken into consideration in the stress analysis of engineering structures. This paper is aimed to discuss important features of this recently identified singular mode, out-of-plane singular mode, conduct a comprehensive three-dimensional numerical study of a typical problem of a welded lap joint to investigate the contribution of this mode into the overall stress state in the close vicinity of the notch tip and discuss the implementation of these new results to the failure and integrity assessment of plate structures with sharp notches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Fatigue & Fracture of Engineering Materials & Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.