Abstract
We discuss the non-equilibrium attractors of systems undergoing Gubser flow within kinetic theory by means of nonlinear dynamical systems. We obtain the attractors of anisotropic hydrodynamics, Israel-Stewart (IS) and transient fluid (DNMR) theories. These attractors are non-planar and the basin of attraction is three dimensional. We compare the asymptotic attractors of each hydrodynamic model with the one obtained from the exact Gubser solution of the Boltzmann equation within the relaxation time approximation. Anisotropic hydrodynamics matches, up to high numerical accuracy, the attractor of the exact theory while the other hydrodynamic theories fail to do so. Thus, anisotropic hydrodynamics is an effective theory for far-from-equilibrium fluids, which consists of the dissipative (nonperturbative) contributions at any order in the gradient expansion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.