Abstract

We study the relaxational dynamics of flux lines in high-temperature superconductors with random pinning using Langevin dynamics. At high temperatures the dynamics is stationary and the fluctuation dissipation theorem (FDT) holds. At low temperatures the system does not equilibrate with its thermal bath: a simple multiplicative aging is found, the FDT is violated, and we find that an effective temperature characterizes the slow modes of the system. The generic features of the evolution--scaling laws--are dictated by those of the single elastic line in a random environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.