Abstract

We report on viscous adhesion measurements conducted in sphere-plane geometry between a rigid sphere and soft surfaces submerged in silicone oils. Increasing the surface compliance leads to a decrease in the adhesive strength due to elastohydrodynamic deformation of the soft surface during debonding. The force-displacement and fluid film thickness-time data are compared to an elastohydrodynamic model that incorporates the force measuring spring and finds good agreement between the model and data. We calculate the pressure distribution in the fluid and find that, in contrast to debonding from rigid surfaces, the pressure drop is non-monotonic and includes the presence of stagnation points within the fluid film when a soft surface is present. In addition, viscous adhesion in the presence of a soft surface leads to a debonding process that occurs via a peeling front (located at a stagnation point), even in the absence of solid-solid contact. As a result of mass conservation, the elastohydrodynamic deformation of the soft surface during detachment leads to surfaces that come closer as the surfaces are separated. During detachment, there is a region with fluid drainage between the centerpoint and the stagnation point, while there is fluid infusion further out. Understanding and harnessing the coupling between lubrication pressure, elasticity, and surface interactions provides material design strategies for applications such as adhesives, coatings, microsensors, and biomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.