Abstract
We propose a novel method to estimate a unique and repeatable reference frame in the context of 3D object recognition from a single viewpoint based on global descriptors. We show that the ability of defining a robust reference frame on both model and scene views allows creating descriptive global representations of the object view, with the beneficial effect of enhancing the spatial descriptiveness of the feature and its ability to recognize objects by means of a simple nearest neighbor classifier computed on the descriptor space. Moreover, the definition of repeatable directions can be deployed to efficiently retrieve the 6DOF pose of the objects in a scene. We experimentally demonstrate the effectiveness of the proposed method on a dataset including 23 scenes acquired with the Microsoft Kinect sensor and 25 full-3D models by comparing the proposed approach with state-of-the-art global descriptors. A substantial improvement is presented regarding accuracy in recognition and 6DOF pose estimation, as well as in terms of computational performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.