Abstract

ABSTRACTIn mobile wireless data access networks, remote data access is expensive in terms of bandwidth consumption. An efficient caching scheme can reduce the amount of data transmission, hence, bandwidth consumption. However, an update event makes the associated cached data objects obsolete and useless for many applications. Data access frequency and update play a crucial role in deciding which data objects should be cached. Seemingly, frequently accessed but infrequently updated objects should have higher preference while preserving in the cache. Other objects should have lower preference or be evicted, or should not be cached at all, to accommodate higher‐preference objects. In this paper, we proposed Optimal Update‐based Replacement, a replacement or eviction scheme, for cache management in wireless data networks. To facilitate the replacement scheme, we also presented two enhanced cache access schemes, named Update‐based Poll‐Each‐Read and Update‐based Call‐Back. The proposed cache management schemes were supported with strong theoretical analysis. Both analysis and extensive simulation results were given to demonstrate that the proposed schemes guarantee optimal amount of data transmission by increasing the number of effective hits and outperform the popular Least Frequently Used scheme in terms of both effective hits and communication cost. Copyright © 2011 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call