Abstract
Separations among the first order logic Ring(0,+, ∗) of finite residue class rings, its extensions with generalized quantifiers, and in the presence of a built-in order are shown, using algebraic methods from class field theory. These methods include classification of spectra of sentences over finite residue classes as systems of congruences, and the study of their h-densities over the set of all prime numbers, for various functions h on the natural numbers. Over ordered structures the logic of finite residue class rings and extensions are known to capture DLOGTIMEuniform circuit complexity classes ranging from AC to TC. Separating these circuit complexity classes is directly related to classifying the h-density of spectra of sentences in the corresponding logics of finite residue classes. We further give general conditions under which a logic over the finite residue class rings has a sentence whose spectrum has no h-density. One application of this result is that Supported by MICINN project TIN2011-27479-C04-03 (BASMATI), MINECO project TIN201457226-P (APCOM) and Gen. Cat. project SGR2014-890 (MACDA).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.