Abstract

BackgroundOuabain, an inhibitor of Na+/K+-ATPase, is a type of endogenous hormone synthesized in the adrenal cortex and hypothalamus. Previous studies found that ouabain potently inhibited inflammatory reactions and regulated immunological processes. Our present study aimed to investigate the therapeutic role of ouabain on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice.Material/MethodsOuabain (0.1 mg/kg) or vehicles were intraperitoneally injected into male C57BL/6J mice once a day for 3 consecutive days. One hour after the last injection of ouabain, LPS (5 mg/kg) was administrated through intranasal instillation to induce ALI. 6 hours and 24 hours later, bronchoalveolar lavage fluid (BALF) and lung tissues were harvested to detect the protective effects of ouabain, including protein concentration, inflammation cell counts, lung wet-to-dry ratio, and lung damage.ResultsThe results showed that ouabain attenuated LPS-induced ALI in mice, which was indicated by alleviated pathological changes, downregulated TNF-α, IL-1β, and IL-6 production, inhibited neutrophils infiltration and macrophages, and ameliorated pulmonary edema and permeability. Further results found the activation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways were suppressed by ouabain in LPS-induced ALI.ConclusionsThese results suggest that ouabain negatively modulates the severity of LPS-induced ALI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.