Abstract
It is rare to give a semantic definition of a full-scale programming language, despite the many potential benefits. Partly this is because the available metalanguages for expressing semantics - usually either L <scp>a</scp> T E X for informal mathematics, or the formal mathematics of a proof assistant - make it much harder than necessary to work with large definitions. We present a metalanguage specifically designed for this problem, and a tool, ott, that sanity-checks such definitions and compiles them into proof assistant code for Coq, HOL, Isabelle, and (in progress) Twelf, together with L <scp>a</scp> T E X code for production-quality typesetting, and OCaml boilerplate. The main innovations are:(1) metalanguage design to make definitions concise, and easy to read and edit;(2) an expressive but intuitive metalanguage for specifying binding structures; and (3) compilation to proof assistant code. This has been tested in substantial case studies, including modular specifications of calculi from the TAPL text, a Lightweight Java with Java JSR 277/294 module system proposals, and a large fragment of OCaml (around 306 rules), with machine proofs of various soundness results. Our aim with this work is to enable a phase change: making it feasible to work routinely, without heroic effort, with rigorous semantic definitions of realistic languages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.