Abstract

The intracellular pathogen, Brucella melitensis, possesses an operon with two components: otpR (BMEI0066), which encodes a response regulator, and BMEI0067, which encodes a putative cAMP-dependent protein kinase regulatory subunit. Previous studies have shown that a polar mutation in the BMEI0066 gene significantly decreased virulence and stress tolerance in Brucella. In this study, we constructed non-polar mutant with deletion of otpR, as well as its complementary strain to further investigate the function of otpR. The ΔotpR mutant produced smaller colonies on TSA plates, and grew slower in tryptic soy broth compared to 16M or the otpR-complemented strain CotpR. Electron microscopy revealed that ΔotpR displayed an unusual, irregular deformation of the cell surface in contrast to the native coccobacillus shape of 16M. These results showed that OtpR played a key role in the maintenance of cell shape. To determine the effect of the otpR mutant on antibiotic susceptibility, compared the parent strain, the mutant was two- to eight-fold more suscepcible to all the β-lactam antibiotics tested. Furthermore, comparative real-time qPCR of genes that related to penicillin binding proteins of cell wall synthesis and cell division showed that the otpR mutation resulted in reduced expression of pbp1C, pbp6B, pbp6C and ftsQ. Taken together, these data revealed that the OtpR activity is necessary for growth, and cell morphology and tolerance to β-lactam agents of B. melitensis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call