Abstract

Pedestrian detection is still a challenging task for computer vision, especially in crowded scenes where the overlaps between pedestrians tend to be large. The non-maximum suppression (NMS) plays an important role in removing the redundant false positive detection proposals while retaining the true positive detection proposals. However, the highly overlapped results may be suppressed if the threshold of NMS is lower. Meanwhile, a higher threshold of NMS will introduce a larger number of false positive results. To solve this problem, we propose an optimal threshold prediction (OTP) based NMS method that predicts a suitable threshold of NMS for each human instance. First, a visibility estimation module is designed to obtain the visibility ratio. Then, we propose a threshold prediction subnet to determine the optimal threshold of NMS automatically according to the visibility ratio and classification score. Finally, we re-formulate the objective function of the subnet and utilize the reward-guided gradient estimation algorithm to update the subnet. Comprehensive experiments on CrowdHuman and CityPersons show the superior performance of the proposed method in pedestrian detection, especially in crowded scenes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.