Abstract

There are thousands of seamounts (underwater mountains) throughout the world's deep oceans, many of which support diverse faunal communities and valuable fish stocks. Although seamounts are often geographically and bathymetrically isolated from one another, it is not clear how biologically isolated they are from one another. We analysed the chemical signature of the otoliths of a deepwater fish, the roundnose grenadier (Coryphaenoides rupestris) to test the null hypothesis that there is random exchange between individuals from a seamount and other adjacent areas. The fish were sampled on the Scottish west coast, from the Rosemary Bank seamount and two adjacent locations of similar depth, in the same year at roughly the same time of year. We used flow-injection inductively coupled plasma mass spectrometry to measure trace element concentrations from micro-milled portions of the otolith corresponding to adult and juvenile life history stages. The elemental signatures of the fish from the seamount were distinguishable from the fish from the two other areas during both the juvenile and adult life-history phase. We infer that once juveniles settle on the seamount they remain there for the rest of their lives. Evidence for population structure should be factored into exploitation strategies to prevent local depletion and is an important consideration with respect to Rosemary bank being included in a network of Marine Protected Areas around Scotland.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.