Abstract
Vertebrates use weight-lending otoconia in the inner ear otolith organs to enable detection of their translation during self or imposed movements and a change in their orientation with respect to gravity. In spaceflight, otoconia are near weightless. It has been hypothesized that otoconia undergo structural remodeling after exposure to weightlessness to restore normal sensation. A structural remodeling is reasoned to occur for hypergravity but in the opposite sense. We explored these hypotheses in several strains of mice within a Biospecimen Sharing Program in separate space- and ground-based projects. Mice were housed 90days on the International Space Station, 13days on two Shuttle Orbiter missions, or exposed to 90days of hindlimb unloading or net 2.38g via centrifugation. Corresponding flight habitat and standard cage vivarium controls were used. Utricular otoliths were visually analyzed using scanning electron microscopy and in selected samples before and after focused ion beam (FIB) milling. Results suggest a possible mass addition to the otoconia outer shell might occur after exposure to longer-duration spaceflight, but not short ones or hindlimb unloading. A destructive process is clearly seen after centrifugation: an ablation or thinning of the outer shell and cavitation of the inner core. This study provides a purely descriptive account of otoconia remodeling after exposures to altered gravity. The mechanism(s) underlying these processes must be identified and quantitatively validated to develop countermeasures to altered gravity levels during exploration missions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Association for Research in Otolaryngology : JARO
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.