Abstract
Benign paroxysmal positional vertigo (BPPV) is the most common vestibular disorder with an incidence between 10.7 and 17.3 per 100,000 persons per year. The mechanism for BPPV has been postulated to involve displaced otoconia resulting in canalithiasis. Although particulate matter has been observed in the endolymph of affected patients undergoing posterior canal occlusion surgery, an otoconial origin for the disease is still questioned. In this study, particulate matter was extracted from the posterior semicircular canal of two patients and examined with scanning electron microscopy. The samples were obtained from two patients intraoperatively during posterior semicircular canal occlusion. The particles were fixed, stored in ethanol, and chemically dehydrated. The samples were sputter coated and viewed under a scanning electron microscope. Digital images were obtained. Intact and degenerating otoconia with and without linking filaments were found attached to amorphous particulate matter. Many otoconia appeared to be partially embedded in a gel matrix, presumably that which encases and anchors the otoconia within the otolith membrane, whereas others stood alone with no attached filaments and matrix. The otoconia measured roughly 2 to 8 μm in length and displayed a uniform outer shape with a cylindrical bulbous body and a 3 + 3 rhombohedral plane at each end. These findings suggest that the source of the particulate matter in the semicircular canals of patients with BPPV is broken off fragments of the utricular otolithic membrane with attached and detached otoconia. NA Laryngoscope, 127:709-714, 2017.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.