Abstract

Aims / Objectives: We present rational solutions to the Kadomtsev-Petviashvili equation (KPI) in terms of polynomials in x, y and t depending on several real parameters. We get an infinite hierarchy of rational solutions written as a quotient of a polynomial of degree 2N(N + 1) - 2 in x, y and t by a polynomial of degree 2N(N + 1) in x, y and t, depending on 2N - 2 real parameters for each positive integer N.
 Place and Duration of Study: Institut de math´ematiques de Bourgogne, Universit´e de Bourgogne Franche-Cont´e between January 2020 and January 2021.
 Conclusion: We construct explicit expressions of the solutions in the simplest cases N = 1 and N = 2 and we study the patterns of their modulus in the (x; y) plane for different values of time t and parameters. In particular, in the study of these solutions, we see the appearance not yet observed of three pairs of two peaks in the case of order 2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.