Abstract

Orthogonal time frequency space (OTFS) is a framework for communication and active sensing that processes signals in the delay-Doppler (DD) domain. This paper explores three key features of the OTFS framework, and explains their value to applications. The first feature is a compact and sparse DD domain parameterization of the wireless channel, where the parameters map directly to physical attributes of the reflectors that comprise the scattering environment, and as a consequence these parameters evolve predictably. The second feature is a novel waveform / modulation technique, matched to the DD channel model, that embeds information symbols in the DD domain. The relation between channel inputs and outputs is localized, non-fading and predictable, even in the presence of significant delay and Doppler spread, and as a consequence the channel can be efficiently acquired and equalized. By avoiding fading, the post equalization SNR remains constant across all information symbols in a packet, so that bit error performance is superior to contemporary multi-carrier waveforms. Further, the OTFS carrier waveform is a localized pulse in the DD domain, making it possible to separate reflectors along both delay and Doppler simultaneously, and to achieve a high-resolution delay-Doppler radar image of the environment. In other words, the DD parameterization provides a common mathematical framework for communication and radar. This is the third feature of the OTFS framework, and it is ideally suited to intelligent transportation systems involving self-driving cars and unmanned ground/aerial vehicles which are self/network controlled. The OTFS waveform is able to support stable and superior performance over a wide range of user speeds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call