Abstract

Phase coarsening, also termed Ostwald ripening, is generally thought to be a slow, diffusion-controlled process which occurs subsequent to phase separation under extremely small under- or over-saturation levels. The theory due to Lifshitz, Slyozov, and Wagner (LSW), which predicts the coarsening kinetics and the particle distribution function, are applicable todilute systems only, in which particle-particle interactions are unimportant. Most liquid phase sintered systems, however, have large enough volume fractions of the dispersed phase to violate the essential assumptions of LSW theory. Recent progress will be described on simulating Ostwald ripening in randomly dispersed, high volume fraction systems. A fast algorithm for solving the multiparticle diffusion problem (MDP) will be described, permitting simulation of coarsening dynamics by cyclic time-stepping and updating the diffusion solution for large random particle arrays. The rate constants, controlling the growth of the average particle, and the particle distribution functions were obtained by numerical simulations up to a volume fraction of 0.55. A new statistical mean field theory has now been developed which reproduces the MDP simulation data accurately, and finally makes clear how the linear mean-field approximations employed by LSW theory must be modified to describe real systems. The predictions of the mean field are found to compare favorably with experimental measurements made over a wide range of volume fraction solid of the kinetics of Ostwald ripening in liquid phase sintered Fe-Cu alloys. The new theory provides a comprehensive approach to understanding microstructural coarsening in liquid phase sintered systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call