Abstract
Integral inequalities concerned with convexity have many applications in several fields of mathematics in which symmetry plays an important role. In the theory of convexity, there exist strong connections between convexity and symmetry. If we are working on one of the concepts, then it can be applied to the other of them. In this paper, we establish some novel generalizations of Ostrowski type inequalities for exponentially s-preinvex and s-preinvex functions on time scale by using Hölder inequality and Montgomery Identity. We also obtain applications to some special means. These results are motivated by the symmetric results obtained in the recent article by Abbasi and Anwar in 2022 on Ostrowski type inequalities for exponentially s-convex functions and s-convex functions on time scale. Moreover, we discuss several special cases of the results obtained in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.