Abstract

In this letter, ostrich-inspired soft robotics, an approach to intelligent robots that can achieve dexterous manipulation and locomotion without hesitating to collide with the surrounding environment, is proposed. The rationale behind the approach is described from the history of bio-inspired mechanisms, biology, and the theory of robot control. This letter focuses on the manipulator. The first prototype of an ostrich-inspired manipulator was developed to investigate its feasibility. This prototype is a serial chain of 18 rigid links connected with rotation joints moving in a vertical plane and driven through two asymmetric antagonistic wire systems connected to two levers that are directly operated by a human operator playing the role of the controller. Therefore, this manipulator is a highly underactuated mechanism that is flexible against external forces. The experimental results show that a human operator can control this manipulator so that its tip (i.e., the head) can reach several positions, including an upper position against gravity, indicating the potential of ostrich-inspired manipulators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call