Abstract

We have carried out fate mapping studies using Osterix-EGFPCre and Osterix-CreERt animal models and found Cre reporter expression in many different cell types that make up the bone marrow stroma. Constitutive fate mapping resulted in the labeling of different cellular components located throughout the bone marrow, whereas temporal fate mapping at E14.5 resulted in the labeling of cells within a region of the bone marrow. The identity of cell types marked by constitutive and temporal fate mapping included osteoblasts, adipocytes, vascular smooth muscle, perineural, and stromal cells. Prolonged tracing of embryonic precursors labeled at E14.5dpc revealed the continued existence of their progeny up to 10 months of age, suggesting that fate mapped, labeled embryonic precursors gave rise to long lived bone marrow progenitor cells. To provide further evidence for the marking of bone marrow progenitors, bone marrow cultures derived from Osterix-EGFPCre/Ai9 mice showed that stromal cells retained Cre reporter expression and yielded a FACS sorted population that was able to differentiate into osteoblasts, adipocytes, and chondrocytes in vitro and into osteoblasts, adipocytes, and perivascular stromal cells after transplantation. Collectively, our studies reveal the developmental process by which Osterix-Cre labeled embryonic progenitors give rise to adult bone marrow progenitors which establish and maintain the bone marrow stroma.

Highlights

  • The bone marrow contains many non-hematopoietic cell types that have been collectively referred to as the stroma

  • An essential component of this process requires embryonic precursors to give rise to adult progenitor cells, which contribute to the maintenance, turnover and repair of tissue

  • During development of the endochondral skeleton, we showed that embryonic precursors marked by Osterix fate mapping populate the bone marrow and give rise to long-lived progeny that trace into a variety of cell lineages that contribute to the makeup of the bone marrow stroma

Read more

Summary

Introduction

The bone marrow contains many non-hematopoietic cell types that have been collectively referred to as the stroma. Ex vivo studies provided evidence that cells derived from the perichondrium migrate into the bone marrow cavity during its formation and contribute to cells of the osteoblast lineage, and transiently contributed to endothelial cells within the bone marrow vasculature [1]. ORt fate mapping showed the likely marking of bone marrow stromal cells [2]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call