Abstract

BackgroundPersonalized maxillary expansion procedure has been proposed to correct maxillary transversal deficiency; different protocols of stem cell activation have been suggested and rapid maxillary expansion (RME) is the most commonly used among clinicians. The present study aimed to quantify in three-dimensions (3D) the osteo-regeneration of the midpalatal suture in children submitted to RME.MethodsThree patients (mean age 8.3 ± 0.9 years) were enrolled in the study to preform biopsy of midpalatal suture. Two patients (subjects 1 and 2) were subjected to RME before biopsy. The third patient did not need maxillary expansion treatment and was enrolled as control (subject 3). Midpalatal suture samples were harvested 7 days after RME in subject 1, and 30 days after RME in subject 2. The samples were harvested with the clinical aim to remove bone for the supernumerary tooth extraction. When possible, maxillary suture and bone margins were both included in the sample. All the biopsies were evaluated by complementary imaging techniques, namely Synchrotron Radiation-based X-ray microtomography (microCT) and comparative light and electron microscopy.ResultsIn agreement with microscopy, it was detected by microCT a relevant amount of newly formed bone both 7 days and 30 days after RME, with bone growth and a progressive mineralization, even if still immature respect to the control, also 30 days after RME. Interestingly, the microCT showed that the new bone was strongly connected and cross-linked, without a preferential orientation perpendicular to the suture’s long axis (previously hypothesized by histology), but with well-organized and rather isotropic 3D trabeculae.ConclusionsThe microCT imaging revealed, for the first time to the authors’ knowledge, the 3D bone regeneration in children submitted to RME.

Highlights

  • Personalized maxillary expansion procedure has been proposed to correct maxillary transversal deficiency; different protocols of stem cell activation have been suggested and rapid maxillary expansion (RME) is the most commonly used among clinicians

  • Since the very beginning of its use, the skeletal effects of RME on mid palatal suture were investigated with the means of radiographic techniques in 2-dimensions [18] and 3-dimensions with cone beam computed tomography (CBCT) [19, 20] in order to better understand the processes behind the healing of the suture and preventing relapse with adequate treatment and retention time

  • While these peaks lie in a grey level range between 110 and 220, the control biopsy is in the range between 150 and 250, demonstrating that, 30 days after RME, the BMD in the treated sites is still sensibly lower than in the control site

Read more

Summary

Introduction

Personalized maxillary expansion procedure has been proposed to correct maxillary transversal deficiency; different protocols of stem cell activation have been suggested and rapid maxillary expansion (RME) is the most commonly used among clinicians. Personalized maxillary expansion procedure was proposed to correct maxillary transversal deficiency [1, 2] by splitting the midpalatal suture stimulating cell growth towards osteo-regeneration [3]. The limit of radiographic investigations was the lacking of comprehension of real cellular activity but only the presence/absence of mineralized tissue might be documented. For this reasons morphologic and histologic studies were performed mainly on animals. The first investigations on human being performed by Melsen [26, 27] collected samples of growing subjects during RME at different stages of treatment and compared them to autoptic material subjected to no treatment

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call