Abstract
Endothelial progenitor cells (EPCs) are the main hypothetical cells that could give rise to vessels and in particular one subtype isolated from peripheral or cord bloods: endothelial colony forming cells (ECFCs). These ECFCs are clonogenic precursors committed to endothelial lineage and have robust vasculogenic properties. However, their low number and poor expansion properties when isolated from human adult bloods, currently limit their use as an autologous cell therapy product. We previously reported that osteoprotegerin (OPG), a well-characterized regulator of bone metabolism, contributes to ischemic tissue revascularization, tumor growth in vivo, and potentiates ECFCs proangiogenic properties through the secretion of SDF-1. The current study investigated the role of OPG in ECFCs differentiation and expansion from cord blood CD34+ cells. OPG increased the number of ECFCs after endothelial differentiation of CD34+ cells, enhancing the time of EPCs colonies initial appearance and the growth kinetic of endothelial cell progeny. OPG-exposed ECFCs expressed higher levels of CD34+ compared to control ECFCs. In conclusion, our findings provide novel insights into OPG in regulation of CD34+ progenitor cells. These results give new opportunities for ex vivo expansion of human ECFCs using OPG as a cell culture component for future ECFC product manufacture according to GMP.
Highlights
Endothelial progenitor cells (EPCs) are the main hypothetical cells that could give rise to vessels and in particular a specific subgroup of circulating EPCs isolated from cord and adult peripheral blood: Endothelial colony forming cells (ECFCs) [1]
We firstly examined the possible involvement of OPG in cord blood CD34+ commitment to ECFCs
We harvested CD34+ cells from umbilical cord bloods and observed ECFCs formation in the presence or absence of 25 ng/ml of OPG added to the culture medium EGM2 from the first day of culture
Summary
Endothelial progenitor cells (EPCs) are the main hypothetical cells that could give rise to vessels and in particular a specific subgroup of circulating EPCs isolated from cord and adult peripheral blood: Endothelial colony forming cells (ECFCs) [1]. These highly proliferative non-hematopoietic phenotype ECFCs are precursors committed to endothelial lineage. We have convincing data showing a clear difference between EPCs with mature cells [2,3,4,5] Their low number and poor expansion properties when isolated from human blood or bone marrow currently limit their use as an autologous cell therapy product [6]. Strategies to improve ECFCs therapeutic potential are needed and one of the challenges is to understand the main effectors allowing an endothelial differentiation from immature cells and/or circulating progenitors
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.