Abstract

Osteopontin (OP) is a component of extracellular, bone, and urinary stone matrices, but the mechanism by which it is stably incorporated into such matrices remains unknown. By SDS-PAGE analysis of [125I]OP, treated with a catalytic amount of TG, we first demonstrate both intra- and intermolecular covalent cross-linking of OP. Most importantly, the analysis of the products generated from reactions containing OP, Fn, and TG by SDS-PAGE, autoradiography, and Western blotting using either OP or Fn antibody, and quantitation of TG-catalyzed epsilon-(gamma-glutamyl)lysine isopeptide formation between OP and Fn demonstrate, for the first time, covalent cross-linking between these two proteins. Similar reactions in the presence of polyamine substrates of TG show OP-Fn intermolecular cross-linking via N,N-bis-(gamma-glutamyl)polyamine formation. Finally, immunoprecipitation of 125I-labeled NRK cell surface proteins with anti-OP and anti-Fn antibodies, SDS-PAGE analysis, and autoradiography provides critical evidence for nonreducible OP-Fn cross-linking in vivo. These results clearly suggest that TG-mediated cross-linking between OP and Fn represents one of the most likely mechanisms by which OP becomes covalently linked to bone matrix, urinary stone matrix, and to ECM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.