Abstract
Unloading of teeth results in extensive alveolar bone remodeling, causing teeth to move in both vertical (“super-eruption”) and horizontal direction (“drift”). In order to decipher the molecular mechanisms of unloading-induced bone remodeling during tooth movement, we focused on the role of osteopontin (OPN) in the un-opposed molar model, comparing wild-type (WT) and OPN-null mice. Our data indicated that OPN was not required for the continuous eruption of un-opposed teeth while OPN was necessary for the drift of teeth. OPN expression and osteoclast counts were greatly increased on alveolar bone surfaces facing the direction of the drift in WT mice, while osteoclast counts were diminished in OPN−/− mice. RANKL expression in the distal periodontal ligament of WT molars increased significantly by day 6 following unloading, while overall levels of RANKL expression were decreased in both WT and OPN-null mice. In vitro treatment of MC3T3 cells, WT BMCs and OPN−/− BMCs with recombinant OPN resulted in significantly increased RANKL expression in all three cell types. The PI3K and MEK/ERK pathway inhibitors Ly294002 and U0126 reduced RANKL expression levels in vitro. Treatment of BMCs and MC3T3 with OPN also resulted in increased ERK phosphorylation and reduced OPG levels. Together, our studies suggest that increased OPN expression during unloading-induced drifting of teeth enhances localized RANKL expression and osteoclast activity on drift-direction alveolar bone surfaces via extracellular matrix signaling pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.