Abstract

Osteopontin is a secreted phosphoprotein that has a number of diverse biological functions, including cell signaling, mediation of cell adhesion, migration, and chemoattraction of monocytes/macrophages. Up-regulation of osteopontin expression by proximal tubular epithelium has been demonstrated in both human and rodent models of renal injury in association with macrophage influx. We studied the expression of osteopontin protein and mRNA in renal donor biopsies (N = 7) and renal transplant biopsies with cyclosporine A toxicity (N = 23) by immunohistochemistry and in situ hybridization. Serial tissue sections were immunostained with a monocyte/macrophage marker, CD68, to demonstrate the pattern of macrophage infiltration. Strong osteopontin expression was observed in the majority of pretransplant donor biopsies in the absence of any macrophage infiltration. In the biopsies with cyclosporine toxicity, osteopontin expression was widespread and demonstrated moderate immunohistochemical signal intensity that did not correlate with the number of interstitial macrophages present. Strong osteopontin protein and mRNA expression by tubular epithelium was observed in pretransplant donor biopsies and in biopsies with cyclosporine toxicity without an inflammatory cell infiltration. Therefore, osteopontin expression alone is insufficient to serve as the principal mediator of intrarenal monocyte/macrophage influx in the transplant setting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.