Abstract

Osteopontin (OPN) is an extracellular matrix protein that has been implicated in vascular smooth muscle cell (VSMC) adhesion. We have previously described the generation of OPN-deficient VSMC that displayed altered adhesion to collagen. We have examined further the causes and consequences of this altered adhesion. OPN-deficiency was associated with a significant reduction in surface expression of α1 and β1 integrins (mean fluorescence intensity α1: OPN-deficient 0.135 ± 0.04 vs. control 0.313 ± 0.05, p < 0.0001; β1: OPN-deficient 0.398 ± 0.09 vs. control 0.570 ± 0.05, p < 0.004). Treatment of normal VSMC with antibody to α1 recapitulated the adhesion defect. OPN-deficient cells without collagen exposure had an apoptotic fraction of 1.9%, which increased to 95.7% after 24 hours exposure to collagen. Exogenous OPN added to cultures within 15 minutes of plating restored normal cell adhesion, but did not prevent cells from undergoing apoptosis. Normal VSMC had no detectable apoptosis after 24 hours incubation in suspension, whereas OPN-deficient cells had an apoptotic fraction of 37.5% when incubated in suspension under the same conditions. The data suggest that OPN-deficient VSMC have two distinct abnormalities: an α1β1-mediated inability to adhere normally to collagen and an increased propensity for apoptosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.