Abstract

Osteoporosis is a bone disease characterized by low bone mass and deterioration of the tissue leading to increased fragility. Osteopontin (OPN), a noncollageneous bone matrix protein, has been shown to play an important role in osteoporosis, bone resorption, and mineralization. However, OPN's role in bone mechanical properties on the submicron scale has not been studied in any detail. In this study, nanoindentation techniques were utilized to investigate how OPN and aging affect bone mechanical properties. Hardness and elastic modulus were calculated and compared between the OPN-deficient mice (OPN(-/-)) and their age and sex-matched wild-type (OPN(+/+)) controls. The results show that the mechanical properties of the young OPN(-/-) bones (age < 12 weeks) are significantly lower than that of the youngest OPN(+/+) bones. This finding was confirmed by additional microindentation testing. Biochemical analysis using micro-Raman spectroscopy indicated more mineral content in young OPN(+/+) bones. Older (age > 12 weeks) bones did not show any significant differences in mechanical properties with genotype. In addition, OPN(+/+) bones show a decrease in mechanical properties between young and older age groups. By contrast, OPN(-/-) bones showed no significant change in mechanical properties with aging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.