Abstract

Although osteopontin (OPN) is induced in alcoholic patients, its role in the pathophysiology of alcoholic liver disease (ALD) remains unclear. Increased translocation of lipopolysaccharide (LPS) from the gut is key for the onset of ALD because it promotes macrophage infiltration and activation, tumor necrosis factor-α (TNFα) production, and liver injury. Since OPN is protective for the intestinal mucosa, we postulated that enhancing OPN expression in the liver and consequently in the blood and/or in the gut could protect from early alcohol-induced liver injury. Wild-type (WT), OPN knockout (Opn(-/-)), and transgenic mice overexpressing OPN in hepatocytes (Opn(HEP) Tg) were fed either the control or the ethanol Lieber-DeCarli diet. Ethanol increased hepatic, plasma, biliary, and fecal OPN more in Opn(HEP) Tg than in WT mice. Steatosis was less in ethanol-treated Opn(HEP) Tg mice as shown by decreased liver-to-body weight ratio, hepatic triglycerides, the steatosis score, oil red-O staining, and lipid peroxidation. There was also less inflammation and liver injury as demonstrated by lower alanine aminotransferase (ALT) activity, hepatocyte ballooning degeneration, LPS levels, the inflammation score, and the number of macrophages and TNFα(+) cells. To establish if OPN could limit LPS availability and its noxious effects in the liver, binding studies were performed. OPN showed binding affinity for LPS which prevented macrophage activation, reactive oxygen, and nitrogen species generation and TNFα production. Treatment with milk OPN (m-OPN) blocked LPS translocation in vivo and protected from early alcohol-induced liver injury. Natural induction plus forced overexpression of OPN in the liver or treatment with m-OPN protect from early alcohol-induced liver injury by blocking the gut-derived LPS and TNFα effects in the liver.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.