Abstract

The scaffold microstructure is important for bone tissue engineering. Failure to synergistically imitate the hierarchical microstructure of the components of bone, such as an osteon with concentric multilayers assembled by nanofibers, hinders the performance for guiding bone regeneration. Here, a 2D bilayer nanofibrous membrane (BLM) containing poly(lactide-co-glycolide) (PLGA)/polycaprolactone (PCL) composite membranes in similar compositions (PCL15 and PCL20), but possessing different degrees of shrinkage, was fabricated via sequential electrospinning. Upon incubation in phosphate buffered saline (PBS) (37 °C), the 2D BLM spontaneously deformed into a 3D shape induced by PCL crystallization within the PLGA matrix, and the PCL15 and PCL20 layer formed a concave and convex surface, respectively. The 3D structure contained curved multilayers with an average diameter of 776 ± 169 μm, and on the concave and convex surface the nanofiber diameters were 792 ± 225 and 881 ± 259 nm, respectively. The initial 2D structure facilitated the even distribution of seeded cells. Adipose-derived stem cells from rats (rADSCs) proliferated faster on a concave surface than on a convex surface. For the 3D BLM, the osteogenic differentiation of rADSCs was significantly higher than that on 2D surfaces, even without osteogenic supplements, which resulted from the stretched cell morphology on the curved sublayer leading to increased expression of lamin-A. After being implanted into cranial defects in Sprague Dawley (SD) rats, 3D BLM significantly accelerated bone formation. In summary, 3D BLM with an osteon-like structure provides a potential strategy to repair bone defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call