Abstract

Bone morphogenetic proteins (BMPs) play a key role in bone and cartilage formation. For these properties, BMPs are employed in the field of tissue engineering to induce bone regeneration in damaged tissues. To overcome drawbacks due to the use of entire proteins, synthetic peptides derived from their parent BMPs have come out as promising molecules for biomaterial design. On the structural ground of the experimental BMP-2 receptor complexes reported in the literature, we designed three peptides, reproducing the BMP-2 region responsible for the binding to the type II receptor, ActRIIB. These peptides were characterized by NMR, and the structural features of the peptide-receptor binding interface were highlighted by docking experiments. Peptide-receptor binding affinities were analyzed by means of ELISA and surface plasmon resonance techniques. Furthermore, cellular assays were performed to assess their osteoinductive properties. A chimera peptide, obtained by combining the sequence portions 73-92 and 30-34 of BMP-2, shows the best affinity for ActRIIB in the series and represents a good starting point for the design of new compounds able to reproduce osteogenic properties of the parent BMP-2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.