Abstract

BackgroundBone marrow–derived mesenchymal stem cells (BMSCs) undergo hypoxia-induced apoptosis when cells are transplanted from a normoxic to a hypoxic microenvironment in vivo. The effect of the osteogenic microenvironment on BMSCs under hypoxic conditions has not yet been revealed. Materials and methodsIn the current study, we investigated the effects on BMSCs of hypoxia and osteogenic induction (OI) individually and in combination. We isolated BMSCs from rat bone marrow and confirmed them by recognition of surface antigens using cytometry. After passaging the BMSCs to the third generation, we treated them with the following conditions: 1% oxygen and OI, normoxia and OI, and 1% oxygen without OI; normoxia without OI was the control condition. On days 3, 7, 14, and 21, we detected the expression levels of hypoxia inducible factor-1α and alkaline phosphate via Western blotting. Cellular apoptosis was detected by Hoechst staining and terminal deoxynucleotidyl transferase-mediated 2′-deoxyuridine, 5′-triphosphate nick end labeling; caspase activity was also detected. ResultsThe expression of hypoxia inducible factor-1α was induced and up-regulated when BMSCs were grown under 1% oxygen. The incidence of terminal deoxynucleotidyl transferase-mediated 2′-deoxyuridine, 5′-triphosphatenick end labeling–positive cells in the hypoxia plus OI group was much lower than that in the hypoxia group without OI. Caspase activity increased on days 3, 7, 14, and 21. The absolute value of caspase was statistically higher in the BMSC hypoxia group than in the other three groups, whose values were similar to each other. ConclusionsOsteogenic induction could protect BMSCs against hypoxia-induced apoptosis. Bone marrow–derived mesenchymal stem cells may be appropriate candidate cells for cytotherapy for skeletal diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.