Abstract

Rat and human bone marrow cells (BMCs) were cultured on a composite ceramic of zinc-containing beta-tricalcium phosphate and hydroxyapatite (ZnTCP/HAP) with a (Ca+Zn)/P molar ratio of 1.60 and varying zinc contents. After a 2-week culture of the BMCs in the presence of beta-glycerophosphate and dexamethasone, many macroscopic mineralized areas with high alkaline phosphatase (ALP) activity were seen on the ZnTCP/HAP ceramic disks. The ALP activity increased with increasing zinc content in the ceramics. The highest ALP activity was observed when the BMCs were cultured on the ceramics with 1.26 wt % zinc, and the ceramics released zinc ions at concentrations from 2.2 to 7.2 microg/mL into the culture medium. Zinc ions were incorporated into mineralized areas produced by BMCs. BMCs also were directly cultured onto the culture dish surface, and the addition of 100 microM of free ZnCl(2) (6.5 microg/mL) to the culture medium significantly increased the ALP activity of the BMCs relative to the culture medium without the ZnCl(2)addition. The maximum zinc concentration required to enhance mineralization was higher in human BMCs than in rat BMCs. The present study demonstrates the superiority of ZnTCP/HAP ceramics over TCP/HAP in supporting the osteogenic differentiation of BMCs, and thus these ceramics are safe and useful in clinical settings, such as for bone reconstructive surgery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.