Abstract
Osteogenic cells form mineralized matrices in vitro, as well as in vivo. The formation and shape of the mineralized matrices are highly regulated by the cells. In vitro formation of mineralized matrices by osteogenic cells can be a model for in vivo osteogenesis. In this study, using a three-dimensional (3D) collagen gel culture system, we developed a new in vitro model for the formation of mineralized particles, a few µm in size, by the osteogenic cells. Human osteosarcoma (HOS) cells formed spherical mineralized matrices (about 12 µm) at approximately 7 days when cultured with β-glycerophosphate (β-GP)-containing culture media on 2D tissue culture plates. Alternately, when they were cultured in a 3D collagen gel containing β-GP, they formed mineralized particles with about 1.7 µm in the gel at approximately 3 days. Calcium precipitation in the gel was evaluated by measuring the gel turbidity. This type of mineralization of HOS cells, which formed mineralized particles inside the gel, was also observed in a peptide-based hydrogel culture. The mineralized particles were completely diminished by inhibiting the activity of Pit-1, phosphate cotransporter, of the HOS cells. When mouse osteoblast-like MC3T3-E1 cells, which form large and flat mineralized matrices in 2D osteogenic conditions at approximately 3 weeks of culture, were cultured in a 3D collagen gel, they also formed mineralized particles in the gel, similar to those in HOS cells, at approximately 18 days. Thus, osteogenic cells cultured in the 3D collagen gel form mineralized particles over a shorter period, and the mineralization could be easily determined by gel turbidity. This 3D gel culture system of osteogenic cells acts as a useful model for cells forming particle-type mineralized matrices, and we assume that the mineralized particles in the 3D hydrogel are calcospherulites, which are derived from matrix vesicles secreted by osteogenic cells.
Highlights
Mineralized matrices consist of organic extracellular components, such as collagen fibers and inorganic hydroxyapatite crystals (Veis, 2003)
When Human osteosarcoma (HOS) cells were cultured in 3D type I collagen gel containing β-GP, the collagen gel gradually became clouded and many particles were observed in the collagen gel by phase contrast microscopy (Fig. 1D)
In this study we developed a new model for in vitro formation of mineralized matrices by osteogenic cells using a 3D collagen gel culture
Summary
Mineralized matrices consist of organic extracellular components, such as collagen fibers and inorganic hydroxyapatite crystals (Veis, 2003). The formation and shape of mineralized matrices in vivo are highly regulated by osteogenic cells. This requires the concerted action of several microenvironmental signals, including cytokines, extracellular matrices, and cell–cell interactions (Lian & Stein, 1992). Osteogenic cells form mineralized particles, a few μm in size, in a 3D collagen gel culture. In vitro formation of mineralized matrices by osteogenic cells can be used as a model for studying in vivo osteogenesis
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.