Abstract

Relationship between (1) osteoblast adhesion and spreading, and (2) phenotype expression was investigated. Cellular adhesion and spreading were estimated after short time (24 h), whereas proliferation and other osteoblast functions--after 7 days. Primary human osteogenic cells were seeded on the samples of titanium (T), surgical steel (S) and tissue culture polystyrene (PS), and incubated at 37 degrees C. After 24 h a number of samples were stained with crystal violet and Hoechst; the average single cell area (spreading) and adhering cell number was measured on each sample. The remaining cultures were supplemented with dexamethasone (10 nM) and beta-glycerophosphate (5 mM), and incubation was continued for 7 days. The cells on each sample were counted and the following tests were performed: XTT mitochondrial activity assay, total protein content, alkaline phosphatase activity (ALP), Sirius Red test for collagen, osteocalcin and calcium concentration. After 24 h significantly greater cell spreading (p < 0.05) and number (p < 0.05) were on T than on S. After 7 days significantly higher on T than on S were: ALP activity (p < 0.000001), collagen (p < 0.0015) and calcium concentration (p < 0.03). XTT results were bigger on S than on T. In control - XTT results were higher than on the metals; collagen and ALP were lower than on T, and calcium level was significantly lower than on T and S (p < 0.025). After 7 days there were no differences in cell number between T and S. Cell number (24 h) correlated with ALP activity (7 days) on steel (coefficient of correlation, CC = 0.866) and titanium (CC = 0.742). The spreading correlated on steel and on titanium with calcium concentration (CC = 0.645 on S, CC = 0.696 on T) and collagen level (CC = -0.638 on S, CC = -0.69 on T). Better conditions for osteoblast phenotype expression on T after 7 days of culture coincided with greater adhesion and spreading of cells after 24 h on T, as compared with S. The initial contact of cells with underlying surface may influence osteoblast functions and possibly, bone regeneration and implant osteointegration in vivo. Early cell spreading may be an indicator of further expression of osteoblast phenotype and may be important for application of osteogenic cells in reconstructive surgery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.