Abstract

A novel electrospinning nanofiber collecting device was designed and utilized to fabricate an integrated poly(ε-caprolactone) (PCL) nanofibrous scaffold with a "random-aligned-random" structure. The random region of the scaffold was subsequently soaked in a 5× simulated body fluid (5× SBF) to coat the surface of the scaffold with a mineral layer. The region-specific composition and structure thus mimic the bone-ligament connection. The ultimate tensile stress of the aligned region is significantly higher than that of the random region. Depending on the chemistry and structure of different regions of the scaffold, the seeded human bone marrow mesenchymal stem cells (hBMSCs) undergo lineage-specific differentiation. Significant up-regulation of tendon-specific marker tenomodulin (Tnmd) and Mohawk homeobox (Mkx) was induced in the aligned region compared to the random region with 3.5-fold for Tnmd and more than 20-fold for Mkx. On the other hand, up-regulation of bone-specific osteocalcin (Ocn) and osteopontin (Opn) was significantly induced in the mineralized region. Immunofluorescence of Tnmd and Ocn proteins further confirmed the regional induction of hBMSC differentiation by the chemistry and structure of the integrated nanofibrous scaffold. The biomimetic PCL nanofibrous scaffold stimulating tenogenesis and osteogenesis chemically and structurally is a promising candidate for functional repair of ligaments and tendons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.