Abstract
Andersen's syndrome is a rare disorder affecting muscle, heart, and bone that is associated with mutations leading to a loss of function of the inwardly rectifying K+ channel Kir2.1. Although the Kir2.1 function can be anticipated in excitable cells by controlling the electrical activity, its role in non-excitable cells remains to be investigated. Using Andersen's syndrome-induced pluripotent stem cells, we investigated the cellular and molecular events during the osteoblastic and chondrogenic differentiation that are affected by the loss of the Ik1 current. We show that loss of Kir2.1 channel function impairs both osteoblastic and chondrogenic processes through the downregulation of master gene expression. This downregulation is the result of an impairment of the bone morphogenetic proteins signaling pathway through dephosphorylation of the Smad proteins. Restoring Kir2.1 channel function in Andersen's syndrome cells rescued master genes expression and restored normal osteoblast and chondrocyte behavior. Our results show that Kir2.1-mediated activity controls endochondral and intramembranous ossification signaling pathways. © 2018 American Society for Bone and Mineral Research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.