Abstract

The use of biodegradable beta-tricalcium phosphate (β-TCP) scaffolds holds great promise for bone tissue engineering. However, the effects of β-TCP on bone and endothelial cells are not fully understood. This study aimed to investigate cell proliferation and differentiation of mono- or co-cultured human-bone-marrow-derived mesenchymal stem cells (hBMSCs) and human-umbilical-vein endothelial cells (HUVECs) on a three-dimensional porous, biodegradable β-TCP scaffold. In co-culture studies, the ratios of hBMSCs:HUVECs were 5:1, 1:1 and 1:5. Cellular morphologies of HUVECs, hBMSCs and co-cultured HUVECs/hBMSCs on the β-TCP scaffolds were monitored using confocal and scanning electron microscopy. Cell proliferation was monitored by measuring the amount of double-stranded DNA (dsDNA) whereas hBMSC and HUVEC differentiation was assessed using the osteogenic and angiogenic markers, alkaline phosphatase (ALP) and PECAM-1 (CD31), respectively. Results show that HUVECs, hBMSCs and hBMSCs/HUVECs adhered to and proliferated well on the β-TCP scaffolds. In monoculture, hBMSCs grew faster than HUVECs on the β-TCP scaffolds after 7days, but HUVECs reached similar levels of proliferation after 14days. In monoculture, β-TCP scaffolds promoted ALP activities of both hBMSCs and HUVECs when compared to those grown on tissue culture well plates. ALP activity of cells in co-culture was higher than that of hBMSCs in monoculture. Real-time polymerase chain reaction results indicate that runx2 and alp gene expression in monocultured hBMSCs remained unchanged at days 7 and 14, but alp gene expression was significantly increased in hBMSC co-cultures when the contribution of individual cell types was not distinguished.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call