Abstract

The use of artificial bone graft substitutes has increased as the surgical applications widen and the availability of allograft bone decreases. The present study was to evaluate the construct combined bone marrow stromal cells (BMSCs) with beta-tricalcium phosphate (beta-TCP) as bone substitute implanted in rat dorsal muscles. To study the osteogenic capability in vivo, specimens were harvested on 1 week, 4 weeks and 8 weeks after implantation, and were analyzed by hematoxylin and eosin (HE) staining. The percentages of new bone formation for each implant type and implantation period were determined by histomorphometry. After 1 week of implantation, new bone formation for both beta-TCP and BMSCs+beta-TCP group had no formed. After 4 weeks of implantation, the amount of bone formation was increased to 1.32 % in beta-TCP group and 6.35% in BMSCs+beta-TCP group. After 8 weeks of implantation, more bone was found in the BMSCs+beta-TCP group (21.58 %), while in the beta-TCP group bone formation was increased to 4.78%. Significant differences between the two groups have been observed. Based on these results, we conclude that bone substitutes constructed by porous beta-TCP scaffold loaded with osteogenically induced BMSCs could promote newly formed bone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call