Abstract

The aim of this study was to compare the promotion of osteogenesis in vitro on three types of titanium surfaces: a strontium-hydroxyapatite (Sr-HA)-coated surface, a nano-HA-coated surface, and an uncoated roughened surface. Sr-HA and HA were placed on disks with a roughened titanium surface by electrochemical deposition. MC3T3-E1 preosteoblast cells and rat bone mesenchymal stem cells were cultured on the Sr-HA, HA-coated, and uncoated roughened disks, and cell adhesion, proliferation, viability, osteogenic differentiation, and formation of mineralized nodules were measured at various time points. The Sr-HA coating produced by a simple electrochemical deposition treatment evidently enhanced the attachment, spreading, alkaline phosphatase activity, and extracellular matrix calcium mineralization of mouse bone mesenchymal stem cells and MC3T3-E1 cells compared with an untreated roughened titanium surface and a nano-HA-coated surface. This study suggests that a Sr-doped nano-HA coating produced through electrochemical deposition improves the osteoconductivity of a microrough titanium surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.