Abstract

Mutations in type I collagen or collagen-related proteins cause osteogenesis imperfecta (OI). Energy expenditure and body composition in OI could reflect reduced mobility or intrinsic defects in osteoblast differentiation increasing adipocyte development. This study compares adiposity and resting energy expenditure (REE) in OI and healthy controls (HC), for OI genotype- and Type-associated differences. We studied 90 participants, 30 with OI (11 COL1A1 Gly, 8 COL1A2 Gly, 4 COL1A1 non-Gly, 1 COL1A2 non-Gly, 6 non-COL; 8 Type III, 16 Type IV, 4 Type VI, 1 Type VII, 1 Type XIV) and 60 HC with sociodemographic characteristics/BMI/BMIz similar to the OI group. Participants underwent dual-energy x-ray absorptiometry to determine lean mass and fat mass percentage (FM%) and REE. FM% and REE were compared, adjusting for covariates, to examine the relationship of OI genotypes and phenotypic Types. FM% did not differ significantly in all patients with OI vs HC (OI: 36.6% ± 1.9%; HC: 32.7% ± 1.2%; P = 0.088). FM% was, however, greater than HC for those with non-COL variants (P = 0.016). FM% did not differ from HC among OI Types (P values > 0.05).Overall, covariate-adjusted REE did not differ significantly between OI and HC (OI: 1376.5 ± 44.7 kcal/d; HC: 1377.0 ± 96 kcal/d; P = 0.345). However, those with non-COL variants (P = 0.016) and Type VI OI (P = 0.04) had significantly lower REE than HC. Overall, patients with OI did not significantly differ in either extra-marrow adiposity or REE from BMI-similar HC. However, reduced REE among those with non-COL variants may contribute to greater adiposity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call