Abstract
Statement of problemReconstruction of alveolar bony defects is difficult using grafting materials in a powder form. A biodegradable scaffold material might simplify the procedure. PurposeThe purpose of this in vivo study was to evaluate osteogenesis ability of a biodegradable CAD-CAM–fabricated polylactic acid (PLA) scaffold enriched with calcium phosphate salts including hydroxyapatite (HA) and beta tricalcium phosphate (β-TCP) used to reconstruct mandibular defects in a dog model. Material and MethodsSurgical defects were made bilaterally in the mandible of male beagle dogs. Computerized tomography images were obtained for determination of the 3-dimensional shape of the defects after 3 months of healing. Porous PLA scaffolds were fabricated by milling custom-made CAD-CAM blocks into the desired shape. After milling, half of the scaffolds were prepared by filling the pores of the scaffolds by a mixture of HA and β-TCP. Scaffolds were inserted in the mandibular defects bilaterally. After a healing time of 8 weeks, the bone-scaffold interface was analyzed histomorphometrically to detect the amount of new bone formation. Stained histological sections were examined using a computer software and depth of new bone formation was assessed (n=14, α=.05). ResultsHistomorphometric analysis revealed that enriched scaffolds with calcium phosphates had significantly (t=4.4, P<.001) higher amounts of new bone formation (1.3 ±0.33 mm) compared with the controls (0.7 ±0.39 mm). Average new bone growth in enriched scaffolds was 1.3 mm while almost half this value was observed in uncoated scaffolds, 0.7 mm. ConclusionsWithin the limitations of this animal study, HA and β-TCP enhanced osteogenesis ability of CAD-CAM–fabricated PLA scaffolds.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.