Abstract

Osteocyte apoptosis is known to trigger targeted bone resorption. In the present study, we developed an osteocyte-viability-based trabecular bone remodeling (OVBR) model. This novel remodeling model, combined with recent advanced simulation methods and analysis techniques, such as the element-by-element 3D finite element method and the ITS technique, was used to quantitatively study the dynamic evolution of bone mass and trabecular microstructure in response to various loading and unloading conditions. Different levels of unloading simulated the disuse condition of bed rest or microgravity in space. The amount of bone loss and microstructural deterioration correlated with the magnitude of unloading. The restoration of bone mass upon the reloading condition was achieved by thickening the remaining trabecular architecture, while the lost trabecular plates and rods could not be recovered by reloading. Compared to previous models, the predictions of bone resorption of the OVBR model are more consistent with physiological values reported from previous experiments. Whereas osteocytes suffer a lack of loading during disuse, they may suffer overloading during the reloading phase, which hampers recovery. The OVBR model is promising for quantitative studies of trabecular bone loss and microstructural deterioration of patients or astronauts during long-term bed rest or space flight and thereafter bone recovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.