Abstract
A new trabecular bone explant model was used to examine osteocyte-osteoblast interactions under DHP loading. DHP loading enhanced osteocyte viability as well as osteoblast function measured by osteoid formation. However, live osteocytes were necessary for osteoblasts to form osteoids in response to DHP, which directly show osteoblast-osteocyte interactions in this in vitro culture. A trabecular bone explant model was characterized and used to examine the effect of osteocyte and osteoblast interactions and dynamic hydrostatic pressure (DHP) loading on osteocyte viability and osteoblast function in long-term culture. Trabecular bone cores obtained from metacarpals of calves were cleaned of bone marrow and trabecular surface cells and divided into six groups, (1) live cores + dynamic hydrostatic pressure (DHP), (2) live cores + sham, (3) live cores + osteoblast + DHP, (4) live cores + osteoblast + sham, (5) devitalized cores + osteoblast + DHP, and (6) devitalized cores + osteoblast + sham, with four culture durations (2, 8, 15, and 22 days; n = 4/group). Cores from groups 3-6 were seeded with osteoblasts, and cores from groups 5 and 6 were devitalized before seeding. Groups 1, 3, and 5 were subjected to daily DHP loading. Bone histomorphometry was performed to quantify osteocyte viability based on morphology and to assess osteoblast function based on osteoid surface per bone surface (Os/Bs). TUNEL staining was performed to evaluate the mode of osteocyte death under various conditions. A portion of osteocytes remained viable for the duration of culture. DHP loading significantly enhanced osteocyte viability up to day 8, whereas the presence of seeded osteoblasts significantly decreased osteocyte viability. Cores with live osteocytes showed higher Os/Bs compared with devitalized cores, which reached significant levels over a greater range of time-points when combined with DHP loading. DHP loading did not increase Os/Bs in the absence of live osteocytes. The percentage of apoptotic cells remained the same regardless of treatment or culture duration. Enhanced osteocyte viability with DHP suggests the necessity of mechanical stimulation for osteocyte survival in vitro. Furthermore, osteocytes play a critical role in the transmission of signals from DHP loading to modulate osteoblast function. This explant culture model may be used for mechanotransduction studies in long-term cultures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.