Abstract
Among bone cells, osteocytes are the most abundant, but also the most challenging to study because they are located inside a dense mineralized matrix. Due to their involvement in bone homeostasis, diverse tools are needed to understand their roles in bone physiology and pathology. This work was aimed at establishing a laser-assisted microdissection protocol to isolate osteocytes and analyze their gene expressions. The goal was to overcome the limitations of the technique currently most used: RNA extraction from the whole bone. To perform laser microdissection and subsequent gene expression analysis, the five main steps of the protocol have been adapted for the bone tissue. After testing many parameters, we found that the best options were (1) take unfixed snap-frozen tissue, (2) cryosection with a supported tape system to improve the tissue morphology if necessary, (3) microdissect regions of interest, and (4) recover the bone pieces by catapulting, if feasible, or by gravity. Finally, RNA extraction (5) was the most efficient with a precipitation method and allowed quantifying the expression of well described osteocyte genes (Gja1/Cx43, Phex, Pdpn, Dmp1, Sost). This work describes two protocols optimized for femur and calvaria and gives an overview of the many optimization options that one could try when facing difficulties with laser microdissection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.