Abstract
Osteoclasts are multinucleated cells with the unique ability to resorb bone matrix. Excessive production or activation of osteoclasts leads to skeletal pathologies that affect a significant portion of the population. Although therapies that effectively target osteoclasts have been developed, they are associated with sometimes severe side effects, and a fuller understanding of osteoclast biology may lead to more specific treatments. Along those lines, a rich body of work has defined essential signaling pathways required for osteoclast formation, function, and survival. Nonetheless, recent studies have cast new light on long-held views regarding the origin of these cells during development and homeostasis, their life span, and the cellular sources of factors that drive their production and activity during homeostasis and disease. In this review, we discuss these new findings in the context of existing work and highlight areas of ongoing and future investigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.