Abstract
Immunomodulatory drugs and monoclonal antibody-based immunotherapies have significantly improved the prognosis of the patients with multiple myeloma (MM) in the recent years. These new classes of reagents target malignant plasma cells (PCs) and further modulate the immune microenvironment, which prolongs anti-MM responses and may prevent tumor occurrence. Since MM remains an incurable cancer for most patients, there continues to be a need to identify new tumor target molecules and investigate alternative cellular approaches using gene therapeutic strategies and novel treatment mechanisms. Osteoclasts (OCs), as critical multi-nucleated large cells responsible for bone destruction in >80% MM patients, have become an attractive cellular target for the development of novel MM immunotherapies. In MM, OCs are induced and activated by malignant PCs in a reciprocal manner, leading to osteolytic bone disease commonly associated with this malignancy. Significantly, bidirectional interactions between OCs and MM cells create a positive feedback loop to promote MM cell progression, increase angiogenesis, and inhibit immune surveillance via both cell–cell contact and abnormal production of multiple cytokines/chemokines. Most recently, hyper-activated OCs have been associated with activation of programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathway, which impairs T cell proliferation and cytotoxicity against MM cells. Importantly, therapeutic anti-CD38 monoclonal antibodies and checkpoint inhibitors can alleviate OC-induced immune suppression. Furthermore, a proliferation-inducing ligand, abundantly secreted by OCs and OC precursors, significantly upregulates PD-L1 expression on MM cells, in addition to directly promoting MM cell proliferation and survival. Coupled with increased PD-L1 expression in other immune-suppressive cells, i.e., myeloid-derived suppressor cells and tumor-associated macrophages, these results strongly suggest that OCs contribute to the immunosuppressive MM BM microenvironment. Based on these findings and ongoing osteoimmunology studies, therapeutic interventions targeting OC number and function are under development to diminish both MM bone disease and related immune suppression. In this review, we discuss the classical and novel roles of OCs in the patho-immunology of MM. We also describe novel therapeutic strategies simultaneously targeting OCs and MM interactions, including PD-1/PD-L1 axis, to overcome the immune-suppressive microenvironment and improve patient outcome.
Highlights
Multiple myeloma (MM), a malignancy of plasma cells (PCs), is defined by abnormal growth of malignant PCs within the bone marrow (BM), resulting in excessive monoclonal immunoglobulin in the blood and urine, impaired renal function, and repeated infections in patients [1]
As programmed cell death ligand 1 (PD-L1) is overexpressed in MM patient cells and other cells associated with immunosuppression including OCs, myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), T regulatory cells (Tregs), and plasmacytoid dendritic cells (pDC), blockade of PD-1/PD-L1 pathway may confer an anti-MM effect by restoring the immune dysfunction
Combining PD-1 inhibitor with IMiDs showed higher response rates in refractory MM (RRMM) patients, clinical trials combining PD-1 inhibitors with IMiDs in MM are currently put on hold due to safety concerns
Summary
Multiple myeloma (MM), a malignancy of plasma cells (PCs), is defined by abnormal growth of malignant PCs within the bone marrow (BM), resulting in excessive monoclonal immunoglobulin in the blood and urine, impaired renal function, and repeated infections in patients [1]. Included are effects of various current and emerging anti-MM treatments on OCs, other cellular subtypes associated the MM bone disease, and immune cells in the BM. The contact between MM cells and BMSCs significantly increases activity and accelerates differentiation of OCs, while inhibiting the growth of OBs [15, 62].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.