Abstract

ObjectivesOsteoclasts can sense the surface topography of materials. However, it is difficult to identify the structural factors that affect osteoclast formation and its function. Furthermore, we hypothesized that the type of osteoclast precursor cells also affects osteoclastogenesis in the materials. In this study, we investigated the effects of defined micro/nanoscale patterns on osteoclastogenesis from bone marrow cells (BMCs). MethodsVarious cyclo-olefin polymer (COP) patterns were prepared using nanoimprinting. The effects of shape, size, and height of the patterns, and the wettability of the patterned surfaces on osteoclastogenesis from BMCs were evaluated in vitro. ResultsOsteoclast formation was promoted on pillars (diameter, 1 μm or 500 nm; height, 500 nm). Notably, osteoclastogenesis from BMCs was better promoted on hydrophobic pillars than on hydrophilic pillars. In contrast, decreased osteoclast formation was observed on the nanopillars (diameter, 100 nm; height, 200 nm). ConclusionsWe demonstrated the promotion of osteoclast formation from BMCs on hydrophobic pillars with diameters of 1 μm and 500 nm. Some cellular behaviors in the patterns were dependent on the type of osteoclast precursor cells. The designed patterns are useful for designing the surface of dental implants or bone replacement materials with a controllable balance between osteoblast and osteoclast activities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call